首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   114727篇
  免费   5211篇
  国内免费   8414篇
  2023年   1059篇
  2022年   1336篇
  2021年   1930篇
  2020年   2305篇
  2019年   3677篇
  2018年   2697篇
  2017年   2320篇
  2016年   2709篇
  2015年   3815篇
  2014年   5579篇
  2013年   8359篇
  2012年   4535篇
  2011年   6449篇
  2010年   4689篇
  2009年   5190篇
  2008年   5546篇
  2007年   5794篇
  2006年   5180篇
  2005年   4648篇
  2004年   3851篇
  2003年   3546篇
  2002年   3043篇
  2001年   2433篇
  2000年   2128篇
  1999年   2037篇
  1998年   1935篇
  1997年   1723篇
  1996年   1602篇
  1995年   1875篇
  1994年   1795篇
  1993年   1681篇
  1992年   1657篇
  1991年   1400篇
  1990年   1325篇
  1989年   1258篇
  1988年   1199篇
  1987年   1180篇
  1986年   789篇
  1985年   1473篇
  1984年   1990篇
  1983年   1423篇
  1982年   1867篇
  1981年   1377篇
  1980年   1311篇
  1979年   1217篇
  1978年   733篇
  1977年   631篇
  1976年   539篇
  1975年   411篇
  1973年   417篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
82.
In the developing wheat grain, photosynthate is transferred longitudinally along the crease phloem and then laterally into the endosperm cavity through the crease vascular parenchyma, pigment strand and nucellar projection. In order to clarify this cellular pathway of photosynthate unloading, and hence the controlling mechanism of grain filling, the potential for symplastic and apoplastic transfer was examined through structural and histochemical studies on these tissue types. It was found that cells in the crease region from the phloem to the nucellar projection are interconnected by numerous plasmodesmata and have dense cytoplasm with abundant mitochondria. Histochemical studies confirmed that, at the stage of grain development studied, an apoplastic barrier exists in the cell walls of the pigment strand. This barrier is composed of lignin, phenolics and suberin. The potential capacity for symplastic transfer, determined by measuring plasmodesmatal frequencies and computing potential sucrose fluxes through these plasmodesmata, indicated that there is sufficient plasmodesmatal cross-sectional area to support symplastic unloading of photosynthate at the rate required for normal grain growth. The potential capacity for membrane transport of sucrose to the apoplast was assessed by measuring plasma membrane surface areas of the various cell types and computing potential plasma membrane fluxes of sucrose. These fluxes indicated that the combined plasma membrane surface areas of the sieve element–companion cell (se–cc) complexes, vascular parenchyma and pigment strand are not sufficient to allow sucrose transfer to the apoplast at the observed rates. In contrast, the wall ingrowths of the transfer cells in the nucellar projection amplify the membrane surface area up to 22-fold, supporting the observed rates of sucrose transfer into the endosperm cavity. We conclude that photosynthate moves via the symplast from the se–cc complexes to the nucellar projection transfer cells, from where it is transferred across the plasma membrane into the endosperm cavity. The apoplastic barrier in the pigment strand is considered to restrict solute movement to the symplast and block apoplastic solute exchange between maternal and embryonic tissues. The implications of this cellular pathway in relation to the control of photosynthate transfer in the developing grain are discussed.  相似文献   
83.
Mitogenic stimulation of protein synthesis is accompanied by an increase in elF-4E phosphorylation. The effect on protein synthesis by induction of differentiation is less well known. We treated P19 embryonal carcinoma cells with the differentiating agent retinoic acid and found that protein synthesis increased during the first hour of addition. However, the phosphorylation state, as well as the turnover of phosphate on elF-4E, remained unchanged. Apparently, the change in protein synthesis after RA addition is regulated by another mechanism than elF-4E phosphorylation. By using P19 cells overexpressing the EGF receptor, we show that the signal transduction pathway that leads to phosphorylation of elF-4E is present in P19 cells; the EGF-induced change in phosphorylation of elF-4E in these cells is likely to be regulated by a change in elF-4E phosphatase activity. These results suggest that the onset of retinoic acid-induced differentiation is triggered by a signal transduction pathway which involves changes in protein synthesis, but not elF-4E phosphorylation. © 1995 Wiley-Liss, Inc.  相似文献   
84.
An A in equilibrium with G transition in exon III is known to differentiate alleles A and B of the cattle beta-lactoglobulin (BLG) gene. A BLG exon III fragment containing the transition site was amplified by the polymerase chain reaction. Temperature gradient gel electrophoresis (TGGE) was then used to detect this transition and hence to genotype cattle: the AT base-pair in allele A was readily distinguished from the GC base-pair of allele B. TGGE can be used to detect any single base-pair substitution, and thus is a powerful method of detecting genetic variability.  相似文献   
85.
Summary The ability of myogenic cells to migrate perpendicular to the long axis of freely autografted muscles was examined. Rat extensor digitorum longus muscles were divided, and one half was devitalized by repeated freezing in liquid nitrogen while the other half was kept viable in physiologic saline. The halves were reunited with sutures and grafted back into the original muscle bed. At intervals between 5 and 25 days the grafts were removed and examined histologically for the presence of myotubes within the devitalized region. Myotubes were first seen in the devitalized half 10 days postgrafting with the maximum number of myotubes observed after 12 to 15 days. These results indicate that myogenic cells are capable of migration perpendicular to the long axis of the muscle fibers in an autograft.  相似文献   
86.
Summary The Drosophila ninaC mutation produces small rhabdomeres with the axial filament of the microvillar cytoskeleton reduced or missing. Using post-embedding immunogold labelling of LR White-embedded eyes, we show that several alleles of this mutation retain positive anti-actin immunoreactivity in the rhabdomeres, comparable to that of wild-type flies.  相似文献   
87.
C. Cattò  G. James  F. Villa  S. Villa 《Biofouling》2018,34(4):440-452
The active moieties of the anti-biofilm natural compounds zosteric (ZA) and salicylic (SA) acids have been covalently immobilized on a low density polyethylene (LDPE) surface. The grafting procedure provided new non-toxic eco-friendly materials (LDPE-CA and LDPE-SA) with anti-biofilm properties superior to the conventional biocide-based approaches and with features suitable for applications in challenging fields where the use of antimicrobial agents is limited. Microbiological investigation proved that LDPE-CA and LDPE-SA: (1) reduced Escherichia coli biofilm biomass by up to 61% with a mechanism that did not affect bacterial viability; (2) significantly affected biofilm morphology, decreasing biofilm thickness, roughness, substratum coverage, cell and matrix polysaccharide bio-volumes by >80% and increasing the surface to bio-volume ratio; (3) made the biofilm more susceptible to ampicillin and ethanol. Since no molecules were leached from the surface, they remained constantly effective and below the lethal level; therefore, the risk of inducing resistance was minimized.  相似文献   
88.
Cancer-derived extracellular vesicles (EVs) promote tumorigenesis, premetastatic niche formation, and metastasis via their protein cargo. However, the proteins packaged by patient tumors into EVs cannot be determined in vivo because of the presence of EVs derived from other tissues. We therefore developed a cross-species proteomic method to quantify the human tumor-derived proteome of plasma EVs produced by patient-derived xenografts of four cancer types. Proteomic profiling revealed individualized packaging of novel protein cargo, and machine learning accurately classified the type of the underlying tumor.  相似文献   
89.
90.
皮肤作为人体最大器官覆盖于全身,能阻挡有害物质的侵入,保护人体内环境稳态,参与人体代谢过程。皮肤损伤、炎症和纤维化等,都会导致皮肤屏障功能的减退,影响正常的生命活动。溶血磷脂酸(lysophosphatidic acid,LPA)是十分活跃的磷脂信号分子,参与多种生理和病理生理过程。LPA是维持体内平衡所必需的生物活性脂质介质,在皮肤中通过不同的信号通路发挥多功能磷脂信使作用。本文综述了皮肤中溶血磷脂酸受体(lysophosphatidic acid receptor,LPA1-6)及其细胞信号通路的作用及机制,综述了LPA在皮肤创面愈合、皮肤瘢痕、皮肤黑色素瘤、硬皮病、皮肤瘙痒、过敏性皮炎、皮肤屏障、皮肤疼痛,皮肤毛发生长中的作用及分子机制,有助于了解LPA在皮肤中的生理和病理生理作用。深入研究LPA的作用机制将有助于挖掘其在皮肤治疗中的作用,开发以LPA为靶点的药物。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号